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A united description of the electrostatics of an arbitrary number of electrostatic multipoles, each
localized in a spherical dielectric cavity, in a dielectric medium is presented. The permanent charges
as well as the polarization surface charges are described by multipole expansions in standard format.
Expressions of the polarization surface charge density, the electrostatic potential energy, and the
electrostatic interaction including the contribution from the polarization surface charge densities are
given. Interacting electrostatic multipoles in dielectric spheres immersed in a medium with a higher
�lower� relative dielectric permittivity experience a repulsive �attractive� potential term that
increases in magnitude at reduced multipole separation, originating from the polarization surface
charges appearing at the dielectric interfaces. Simplified expressions applied to monopoles and to
two dielectric cavities are provided. Numerical examples involving monopoles and dipoles
quantifying the effect of the surface polarization are also included. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2908077�

I. INTRODUCTION

Even on the classical level of description, condensed
matter such as charged species dissolved in a solution pos-
sesses several intellectual challenges. One of the most re-
markable approximations is the so-called dielectric approxi-
mation applied to solutions of ionic species.1–3 This
approximation involves a replacement of a model system
composed of charged species and solvent with a gas of the
charged species, now with their interaction attenuated by the
relative dielectric permittivity of the solvent. This simplifi-
cation applied to arbitrary solutes is sometimes referred to as
the McMillan–Mayer theory.4

An astonishing finding is that the dielectric approxima-
tion holds for simple ions dissolved in water down to only a
few layers of water between the ions.5–7 This success of the
dielectric approximation lies behind the usefulness of the
Poisson–Boltzman �PB� equation applied to aqueous solu-
tions of monovalent ions. However, for multivalent ions the
PB equation becomes less accurate; an observation that is
attributed to the neglect of the ion-ion correlations in the PB
theory.8

The dielectric approximation is also ubiquitous when de-
scribing charged colloids in aqueous solutions; here colloids
refer to proteins, silica particles, latex particles, etc.9–13 In
most cases, the different dielectric permittivity of the col-
loids and the solvent is neglected, mainly for the technical
complexity to include it.

A charge in a dielectric medium polarizes the medium.1,2

Consequently, a charge near a boundary between two media
with different dielectric properties leads to a polarization sur-
face charge density at the boundary. For a single and planar
dielectric discontinuity, the electrostatic potential on either
side of the discontinuity arising from the polarization surface

charge is simple to describe2 and it can be reexpressed as the
electrostatic potential arising from a so-called image charge
on the other side of the discontinuity. With several and par-
allel dielectric discontinuities, the induced surface charges
have to be solved self-consistently, but the algebra is still
relatively simple.

The corresponding expressions for a charge near a
spherical dielectric discontinuity have also been
provided.1,14–16 The physical interpretation of the polariza-
tion surface charge in terms of image charges becomes less
trivial, since each charge gives rise to a manifold of image
charges.15 Furthermore, systems composed of two spherical
dielectric cavities with monopoles,17,18 multipoles, but re-
taining an overall axial symmetry,19 or with general
multipoles20 have been examined with multipole expansions.
In addition, two spherical dielectric cavities with monopoles
have also been analyzed with bispherical coordinates.21,22 A
reduction of these expressions to a single cavity leads to the
classical Born model23 describing the solvation of ions in
dielectric media and to the reaction field of a point dipole in
a medium.24,25,1 Variational formulations have also been ap-
plied to solve dielectric boundary problems.26,27

The present contribution provides a united description of
the electrostatic interaction of an arbitrary set of electrostatic
multipoles, each localized in a spherical cavity possessing a
dielectric permittivity different from that of the surroundings.
In the following section, the basic expressions describing
electrostatic charge distributions, potentials, and fields in
vacuum are provided with special focus on expansions in
spherical harmonics. Thereafter, the interaction energies be-
tween overlapping and between nonoverlapping charge dis-
tributions are discussed using the notation introduced. The
relevant equations for describing polarization in media and
polarization surface charges at dielectric discontinuities are
briefly given in the following section. This is followed by a
derivation of general expressions of the polarization surfacea�Electronic mail: per.linse@fkem1.lu.se.
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charge densities, electrostatic potential energies, and the
electrostatic interaction, for a system containing an arbitrary
number of electrostatic multipoles, each localized in a
spherical dielectric cavity, in a dielectric medium. Thereafter,
corresponding expressions for simplified systems involving
monopoles and involving two cavities are presented. The
contribution ends with some numerical examples quantifying
the effect of the surface polarization on the electrostatic in-
teraction. Further application of the present formalism to in-
vestigate the potential of mean force between two low-
dielectric charged colloids in water will be given in a
forthcoming paper.28

II. A SINGLE CHARGE DISTRIBUTION

In vacuum, a charge distribution, ��r��, in a finite vol-
ume, V, generates an electrostatic potential, �, at a field
point, r, according to

��r� =
1

4��0
�

V

dr�
��r��

�r − r��
. �1�

With the use of an expansion of 1 / �r−r�� in Racah’s unnor-
malized spherical harmonics Clm���, ���� ,�� with � and
� denoting the spherical polar angles, according to �see p.
151 of Ref. 29�

1

�r − r��
= �

lm

r�
l

r	
l+1Clm

� ���Clm���� , �2�

where r��min�r ,r��, r	�max�r ,r��, and �lm

��l=0

 �m=−l

l , we get

��r� =
1

4��0
�
V

dr��
lm

r�
l

r	
l+1��r��Clm

� ���Clm���� . �3�

Here, and in the following, a star denotes the complex con-
jugate. Two cases can now be considered: �i� the location of
the field point being further away than all charges in the
charge distribution, �, from the expansion point �r	rmax� �
and �ii� The location of the field point being closer than all
charges in the charge distribution, �, to the expansion point
�r�rmin� �. In those cases, the electrostatic potential can then
be expressed as

��r� =
1

4��0
�
lm

Qlm
	 1

rl+1Clm
� ��� , r 	 rmax� , �4�

��r� =
1

4��0
�
lm

Qlm
� rlClm

� ��� , r � rmin� , �4��

respectively, where the spherical multipole moments Qlm
	 and

Qlm
� are defined according to

Qlm
	 � �

V

dr���r��r�lClm���� , r 	 rmax� , �5�

Qlm
� � �

V

dr���r��
1

r�l+1Clm���� , r � rmin� . �5��

The moments with l=0,1 ,2 ,3 , . . . denote monopole
�charge�, dipole, quadrupole, octupole, etc. The spherical
multipole moments Qlm transfer under rotation as the spheri-
cal harmonics. Moreover,

Qlm
� = �− 1�mQl,−m. �6�

In addition, if the charge distribution has an inversion center,
then Qlm=0 for odd l. An axial charge distribution has only
one independent component for each l. If the symmetry axis
coincides with the azimuthal axis, we have Qlm=0 for m
�0. More generally, for a charge distribution with a n-fold
symmetry axis, we have Qlm=0 for m�0 if l�m.

Now consider a charge distribution on the spherical sur-
face, S, with the radius, a, according to

��r� = ��r − a����� , �7�

where � is the Dirac delta function and ���� denotes the
surface charge density. Since the spherical harmonics consti-
tute a complete set, the surface charge density can be ex-
panded according to

���� = �
lm

2l + 1

4�a2 �lmClm
� ��� , �8�

where the expansion coefficients �lm,

�lm � �
S

d�������a2Clm���� , �9�

are referred to as the spherical surface charge multipole mo-
ments. Equations �5�, �7�, and �9� give the following relation
between the spherical multipole moments and the spherical
surface charge multipole moments for a spherical surface
charge distribution:

Qlm
	 = al�lm, r 	 a , �10�

Qlm
� =

1

al+1�lm, r � a . �10��

The insertion of Eq. �10� into Eq. �4� shows that the electro-
static potential at r with respect to the center of a spherical
surface charge density is given by

��r� =
1

4��0
�
lm

�lm
al

rl+1Clm
� ��� , r 	 a , �11�

��r� =
1

4��0
�
lm

�lm
rl

al+1Clm
� ��� , r � a . �11��

The electrostatic field, E, at the field point, r, is related
to the electrostatic potential, �, according to
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E�r� = − ���r� . �12�

The electrostatic field in the normal direction from the center
of the multipole becomes with help of Eqs. �12� and �4�,

En�r� =
1

4��0
�
lm

�l + 1�Qlm
	 1

rl+2Clm
� ��� , r 	 rmax� , �13�

En�r� =
1

4��0
�
lm

�− l�Qlm
� rl−1Clm

� ��� , r � rmin� . �13��

III. TWO NONOVERLAPPING CHARGE
DISTRIBUTIONS

We will now consider the two nonoverlapping charge
distributions, �1 and �2, within the volumes, V1 and V2, re-
spectively, in vacuum. From Coulomb’s law and the super-
position principle, the interaction energy between the two
charge distributions becomes

U =
1

4��0
�

V1

dr1�
V2

dr2
�1�r1��2�r2�

�r2 − r1�
. �14�

With the electrostatic potential given by Eq. �1�, the in-
teraction energy can also be expressed as

U = �
V2

�2�r2��1�r2�dr2, �15�

U = �
V1

�1�r1��2�r1�dr1, �15��

i.e., the interaction energy can be obtained by integration of
�2�r2��1�r2� over the volume V2, where �1�r2� is the poten-
tial at r2 generated by the charge distribution �1. Obviously,
the reverse also holds by symmetry. In the following, we will
examine two cases: �i� V1 being enclosed by V2 and �ii� V1

and V2 not enclosing each other, as illustrated in Fig. 1.
Consider a charge distribution, �1�r1�, within volume,

V1, and a charge distribution, �2�r2�, within volume, V2,
where �1 is enclosed by �2 �Fig. 1�a��. The spherical multi-
poles Q1 and Q2 of the two charge distributions refer to the
same expansion center, the origin of the coordinate system.
The interaction energy between the two charge distributions

can be reformulated by substituting Eq. �2� with r→r2 and
r�→r1 into Eq. �14� and the subsequent integrations over V1

and V2 leading to

U =
1

4��0
�
lm

Q1,lmQ2,lm
� , �16�

where the spherical multipole moments Q1,lm=Qlm
	 and

Q2,lm=Qlm
� given by Eqs. �5�, respectively, have been used.

In the case of nonoverlapping and nonenclosing charge
distributions �Fig. 1�b��, the inverse distance 1 /r12 cannot be
expanded according to Eq. �2�, since r1 and r2 originate from
different points, viz. 0 and R, respectively. Instead, provided
that �r1−r2��R, 1 /r12 can be expanded according to

1

r12
=

1

�− r1 + R + r2�
=

1

�R − �r1 − r2��

= �
LM

�r1 − r2�L

RL+1 CLM
� ���CLM���� , �17�

where Eq. �2� has been used and with �� denoting the direc-
tion of r1−r2 relative to the external coordinate system. With
the help of an expansion of �r1−r2�LCLM���� in terms of r1,
�1, r2, and �2 �see p. 151 of Ref. 29�, Eq. �17� can be
expressed as

1

r12
= �

l1m1

�
l2m2

�− 1�l1−M	 �2L�!
�2l1� ! �2l2�!
1/2

�2L + 1


� l1 l2 L

m1 m2 − M

r1

l1Cl1m1
��1�r2

l2Cl2m2
��2�



1

RL+1CLM
� ��� , �18�

with L= l1+ l2 and M =m+m2. The phase �−1�l1 in Eq. �18�
originates from the definition that R points from charge dis-
tribution �1 to �2. Eventually, the substitution of Eq. �18�
into Eq. �14� gives the interaction energy between the two
charge distributions. By using the definition of the spherical
multipole moments, Eq. �5�, we get

U =
1

4��0
�
l1m1

�
l2m2

�− 1�l1+M	 �2L�!
�2l1� ! �2l2�!
1/2

�2L + 1


� l1 l2 L

m1 m2 − M

Q1,l1m1

Q2,l2m2

1

RL+1CLM
� ��� . �19�

Equation �19� can be used to obtain the electrostatic poten-
tials. Let �1�R+r2� denote the electrostatic potential gener-
ated by charge distribution �1 at R+r2 and �2�r1� denote the
electrostatic potential generated by charge distribution �2 at
r1. These potentials are obtained by the insertion of the
spherical multipole moments Qlm according to Eq. �5� into
Eq. �19� followed by an identification with Eq. �15� �and the
substitution r2→R+r2 in the former case�, giving

FIG. 1. Illustration of two nonoverlapping charge distributions in the vol-
umes V1 and V2, respectively, where �a� V1 is enclosed by V2 and �b� V1 and
V2 are not enclosing each other.
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�1�R + r2� =
1

4��0
�
l1m1

�
l2m2


�− 1�l1−M	 �2L�!
�2l1� ! �2l2�!
1/2

�2L + 1


� l1 l2 L

m1 m2 − M

Q1,l1m1

r2
l2Cl2m2

��2�



1

RL+1CLM
� ��� , �20�

�2�r1� =
1

4��0
�
l1m1

�
l2m2


�− 1�l1+M	 �2L�!
�2l1� ! �2l2�!
1/2

�2L + 1


� l1 l2 L

m1 m2 − M

r1

l1Cl1m1
��1�


Q2,l2m2

1

RL+1CLM
� ��� . �21�

IV. DIELECTRIC MEDIA AND DISCONTINUITIES

So far, only the electrostatic interaction in vacuum has
been examined. However, in the following we will consider
charge distributions in microscopically homogeneous media.
We impose the restriction that a medium is isotropic, homo-
geneous, displays linear response, and is polarized only by
the homogeneous part of the electrostatic field. In this de-
scription, we are interested to determine the polarization sur-
face charge densities at the dielectric discontinuities occur-
ring at the boundaries between different media and the
�partly free� electrostatic energy of the system.

An electrostatic field in a medium characterized above
gives rise to a polarization dipole density. Therefore, at the
boundary between two different media a polarization surface
charge density will appear. The electrostatic field equations
for continuous media show that the potential across the in-
terface remains continuous, and if the interface does not pos-
sess permanent surface charges, the normal component of the
dielectric displacement also remains continuous across the
interface.1,2 Thus, that implies

�1�r� = �2�r�, r � S , �22�

�1En1
�r� = �2En2

�r�, r � S , �23�

where �1 and �2 are the relative dielectric permittivities of
medium 1 and 2, respectively, and S is the interface between
medium 1 and 2. By using �0�E�r�=�0E�r�+P�r�, where
P�r� is the polarization density at r, the polarization surface
charge density � at r becomes

�pol�r� = Pn2
�r� − Pn1

�r� = �0�En2
�r� − En1

�r�� ,

r � S . �24�

With the knowledge of �1 and �2 as well as the normal of
the electrostatic field at one side of the interface, the polar-
ization surface charge density can be expressed as

�pol�r� = �0	�1 − �2

�2

En1

�r� = �0	�1 − �2

�1

En2

�r� ,

r � S . �25�

If the field increases �� reduces� as an interface is passed in
the field direction, �pol is positive.

Given the permanent charge distributions Q
= �Q1 ,Q2 ,Q3 , . . .� and the spherical dielectric boundaries S
= �S1 ,S2 ,S3 , . . .�, where Q1 is enclosed by S1, Q2 by S2, etc.,
the polarization surface charge densities �pol

= ��1,pol ,�2,pol ,�3,pol , . . .� are uniquely determined. The total
electrostatic energy of the system U can be expressed as

U = Ustat + Upol, �26�

where Ustat is the interaction energy among the permanent
charge distributions and Upol is the interaction energy be-
tween all permanent charge distributions and all polarization
surface charge distributions. Ustat and Upol are evaluated us-
ing relevant expressions given earlier; however, regarding
Upol, the expressions should be multiplied with 1/2 due to the
assumption of the linear response of the media.1,2

V. SYSTEM OF MULTIPOLES IN SPHERICAL
DIELECTRIC CAVITIES

In the following, systems comprising of electrostatic
multipoles in spherical dielectric cavities immersed in a di-
electric medium and some limiting cases will be considered.
Throughout, our aim is to determine the polarization surface
charge densities, the total electrostatic energy of the system,
and the electrostatic interaction obtained by subtracting elec-
trostatic self-energies of infinitely separated subsystems from
the total electrostatic energy.

A. General

Consider a system consisting of N nonoverlapping sub-
systems in a dielectric medium, where each subsystem is
composed of an electrostatic multipole localized in a spheri-
cal dielectric cavity �see Fig. 2�. Subsystem i, i=1,2 , . . . ,N,
is located at Ri= �Ri ,�i�, possessing the spherical multipole
moments, Qi,lm, with respect to Ri and its spherical region
has the radius, ai ,and the relative dielectric permittivity, �1.
The surrounding medium has the relative dielectric permit-
tivity �2. The polarization surface charge density at the
boundary of subsystem i is denoted by �i.

Briefly, in the following the electrostatic potential at ri,
ri=ai will be expressed as a superposition of terms arising
from Qj and � j, j=1,2 , . . . ,N expanded about Ri Thereafter,
the normal of the electrostatic field at ri can easily be ob-
tained, and with Eq. �25� an equation for �i can be con-
structed. From the set of such N equations obtained by ex-
pansion about all Ri, i=1,2 , . . . ,N, the polarization surface
charge densities �i, i=1,2 , . . . ,N, can be solved. Finally, an
expression of the interaction energy can be formulated.
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According to Eqs. �4� and �11�, the potential at ri

= �ri ,�i�, ri	ai arising from Qi and �i becomes

�i�ri� =
1

4��0
�
l1m1

	Qi,l1m1

�1
+ ai

l1�i,l1m1

 1

ri
l1+1Cl1m1

� ��i� ,

�27�

where �i,l1m1
is given by Eq. �9�. The potential at R j +r j, r j

= �rj ,� j�, rj 	aj, generated by Qj and by � j, j� i, expanded
about R j is given analogously. Now, we need to translate the
expansion center of Qj and � j from R j to Ri. By the use of
Eq. �21�, the potential generated by Qj and � j at ri,
ri�Rij −aj, can be expressed as

� j�ri� =
1

4��0
�
l1m1

�
l2m2

�− 1�l1+Mf�l1,l2,m1,m2�


	Qj,l2m2

�1
+ aj

l2� j,l2m2

ri

l1Cl1m1
��i�



1

Rij
L+1CLM

� ��ij� , �28�

where we here for convenience have introduced

f�l1,l2,m1,m2�

� 	 �2L�!
�2l1� ! �2l2�!
1/2

�2L + 1� l1 l2 L

m1 m2 − M

 ,

�29�

and L� l1+ l2 and M �m1+m2. The total potential at ri,
ai�ri�Rij −aj, arising from N subsystems is obtained
through

��ri� = �i�ri� + �
j�i

� j�ri� . �30�

Now, �i� substitution of Eqs. �27� and �28� into Eq. �30�,
�ii� obtaining the field normal to the dielectric discontinuity
En,2�ri� according to Eq. �13�, �iii� insertion of En,2�ri� into
Eq. �25� to obtain the surface charge density �i, and �iv�
insertion of �i in Eq. �9� and solving for the spherical surface

charge multipole moments �i,l1m1
, i=1,2 , . . . ,N, results in

�i,l1m1
= −

�2 − �1

�2 +
l1

l1+1�1
�Qi,l1m1

�1

1

ai
l1

−
l1

l1 + 1
ai

l1+1


 �
l2m2

�− 1�l1+Mf�l1,l2,m1,m2�


�
j�i
	Qj,l2m2

�

�1
+ aj

l2� j,l2m2

� 
 1

Rij
L+1CLM��ij�� .

�31�

We notice that �i,00, i=1,2 , . . . ,N are decoupled from the
remaining multipole moments and are independent on the
positions of the subsystems.

According to Eq. �26� and the following discussion, the
total electrostatic energy of the system can be expressed as

U = Ustat + Upol,

Ustat = �
i

�
j	i

UQiQj
,

Upol =
1

2
��

i
�
j�i

U�iQj
+ �

i

U�iQi
� , �32�

where UQiQj
denotes the electrostatic interaction between the

electrostatic multipoles Qi and Qj; U�iQj
denotes the electro-

static interaction between the polarization surface charge
density �i and the electrostatic multipole Qj, j� i; and U�iQi
denotes the electrostatic interaction between the polarization
surface charge density �i and the electrostatic multipole Qi.
With the use of Eqs. �19�, �10�, and �16�, the following ex-
pressions for UQiQj

, U�iQj
, and U�iQi

are obtained:

UQiQj
=

1

4��0�1


 �
l1m1

�
l2m2

�− 1�l1+Mf�l1,l2,m1,m2�Qi,l1m1
Qj,l2m2



1

Rij
L+1CLM

� ��ij� ,

U�iQj
=

1

4��0


 �
l1m1

�
l2m2

�

− 1�l1+Mf�l1,l2,m1,m2�ai
l1�i,l1m1

Qj,l2m2



1

Rij
L+1CLM

� ��ij� ,

U�iQi
=

1

4��0
�
lm

1

ai
l+1�i,lm

� Qi,lm. �33�

The interaction energy of the system with respect to mu-
tual infinite separation among the subsystems �Rij ��Rij�
��R j −Ri�→
 , ∀ ij� becomes

FIG. 2. Illustration of spherical multipoles, each located in a spherical di-
electric cavity with relative dielectric permittivity �1, immersed in a medium
with the relative dielectric permittivity �2. The spherical multipole, i, is
characterized by its strength, Qi, and located at Ri, whereas its cavity has the
radius, ai, and the polarization surface charge densit, �i.
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Uint � U − U�Rij → 
, ∀ ij� , �34�

where U is given by Eqs. �32� and �33� and U�Rij

→
 , ∀ ij� is given by

U�Rij → 
, ∀ ij�

= −
1

4��0�1

1

2�
i

�
lm

�2 − �1

�2 + l
l+1�1

1

ai
2l+1 �Qi,lm�2. �35�

Equation �31� specifying the spherical surface charge
multipole moments, �i,lm, i=1,2 , . . . ,N, and Eqs. �32�–�35�
specifying the total electrostatic energy, U, and interaction
energy, Uint, of the system constitute the main results of the
present work. In the following, corresponding expressions
for simplified systems will be given.

B. System of monopoles in cavities

We will simplify by assuming that multipole i is a point
charge in the center of sphere i, hence, Qi,lm=qi�l0�m0, i
=1,2 , . . . ,N. With these monopoles, we get from Eq. �31�
after some simplifications

�i,00 = −
�2 − �1

�2

qi

�1
�36�

and

�i,l1m1
= −

�2 − �1

�2 +
l1

l1 + 1
�1


�−
l1

l1 + 1
ai

l1+1	�
j�i

qj

�2

1

Rij
l1+1Cl1m1

��ij�

+ �
l2�1, m2

�− 1�l1+Mf�l1,l2,m1,m2��
j�i

aj
l2�

j,l2m2

*



1

Rij
L+1CLM��ij�
� ,

l1 � 1, �37�

where the terms involving the factors qj /�1 and � j,00 have
been merged to give the term with the factor qj /�2, and
hence, the summation over l2 starts from 1. After some ma-
nipulation, the electrostatic energy contributions become

Uqiqj
=

1

4��0�1

qiqj

Rij
,

U�iqj
=

1

4��0
	−

�2 − �1

�1�2

qiqj

Rij
+ qj �

l�1, m

ai
l�i,lm

Rij
l+1 C

lm
* ��ij�
 ,

U�iqi
= −

1

4��0�1

�2 − �1

�2

qi
2

ai
, �38�

and the interaction energy as defined by Eq. �34� becomes

Uint = �
i

�
j	i

Ũqiqj
+

1

2�
i

�
j�i

Ũ�iqj
,

Ũqiqj
=

1

4��0�2

qiqj

Rij
,

Ũ�iqj
=

1

4��0
qj �

l�1,m

ai
l�i,lm

Rij
l+1 C

lm
* ��ij� . �39�

Here half of the sum of the first terms of U�iqj
and U�jqi

in

Eq. �38� have been merged with Uqiqj
to form Ũqiqj

, leading
to an apparent change of the dielectric screening from 1 /�1

to 1 /�2 of the interaction among the monopoles. In the limit

of vanishing spherical cavities, Ũ�jqi
, ∀ij, is zero, and the

interaction energy provides the picture that Coulomb law is
operating, but the electrostatic interaction being attenuated
with the relative dielectric permittivity of the medium.

C. Two multipoles

We will now continue with the special case of a system
composed of two subsystems, labeled 1 and 2 �see Fig. 3�.
Moreover, without loss of generality, R12 is parallel to the z
axis leading to CLM��12�=�M0 and −m2=m1. For simplicity,
we introduce R=R12 and m=−m2=m1. From Eq. �31� and
with help of Eq. �6� we obtain

�1,l1m = −
�2 − �1

�2 +
l1

l1 + 1
�1

�Q1,l1m

�1

1

a1
l1

−
l1

l1 + 1
a1

l1+1


�
l2

�− 1�l1+mf�l1,l2,m,− m�


	Q2,l2m

�1
+ a2

l2�2,l2m
 1

RL+1� . �40�

A few comments: �i� By symmetry, �2,l1m is obtained by
swapping system indices 1 and 2 and multiplication of the
1 /RL+1 terms by the phase factor �−1�L. �ii� As before, the
components �1,00 and �2,00 are decoupled from the remaining
ones. �iii� For a fully axial symmetry, only terms in Eq. �40�
with m=0 contribute and the f function reduces to
f�l1 , l2 ,0 ,0�= �−1�l1+l2�l1+ l2� ! / �l1 ! l2!�.

The total electrostatic energy of the system becomes

FIG. 3. Illustration of the two spherical multipoles, Q1 and Q2, each located
in the center of a dielectric sphere with the relative dielectric permittivity,
�1, radii, a1 and a2, and the polarization surface charges, �1 and �2, respec-
tively, immersed in a medium with the relative dielectric permittivity, �2.
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U = Ustat + Upol,

Ustat = UQ1Q2
,

Upol = 1
2 ��U�1Q2

+ U�2Q1
� + �U�1Q1

+ U�2Q2
�� , �41�

with

UQ1Q2
=

1

4��0�1
�
l1

�
l2

�
m

�− 1�l1f�l1,l2,m,− m�


Q1,l1mQ2,l2−m
1

RL+1,

U�1Q2
=

1

4��0
�
l1

�
l2

�
m

�− 1�l1f�l1,l2,m,− m�


a1
l1�1,l1mQ2,l2−m

1

RL+1 ,

U�1Q1
=

1

4��0
�
lm

1

a1
l+1�1,lm

* Q1,lm, �42�

and U�2Q1
and U�2Q2

obtained by swapping system indices 1
and 2 and multiplication of the 1 /RL+1 terms by the phase
factor �−1�L in the expressions of U�1Q2

and U�1Q1
, respec-

tively. The interaction energy is still given by Eqs. �34� and
�35�, but the summation over subsystems in Eq. �35� is re-
stricted to subsystems 1 and 2.

D. Two monopoles

We will again consider a system composed of two sub-
systems, but now they possess only monopoles, i.e., Q1,l1m1
=q1�l10�m10 and Q2,l2m2

=q2�l20�m20. Again we let R be par-
allel to the z axis. With these monopoles, we get from Eq.
�40�,

�1,00 = −
�2 − �1

�2

q1

�1
, �43�

�1,l1m = −
�2 − �1

�2 +
l1

l1+1�1
�−

l1

l1 + 1
a1

l1+1	q2�m0

�2

1

Rl1+1

+ �
l2�1

�− 1�l1+mf�l1,l2,m,− m��2,l2m
1

RL+1
� ,

l1 � 1, �44�

and similar expressions for �2,lm. Furthermore, the insertion
of Eqs. �43� and �44� into Eq. �42� results in the electrostatic
energy contributions

Uq1q2
=

1

4��0�1

q1q2

R
,

U�1q2
=

1

4��0
	−

�2 − �1

�1�2

q1q2

R
+ q2�

l�1

a1
l �1,l0

Rl+1 
 ,

U�1q1
= −

1

4��0�1

�2 − �1

�2

q1
2

a1
, �45�

whereas the interaction energy with respect to two infinitely
separated subsystems Uint becomes

Uint = Ũq1q2
+ 1

2 �Ũ�1q2
+ Ũ�2q1

� ,

Ũq1q2
=

1

4��0�2

q1q2

R
,

Ũ�1q2
=

1

4��0
q2�

l�1

a1
l �1,l0

Rl+1 . �46�

We will now consider two special cases. The first one
comprises a truncation of the expansion of �1 and �2 and
solving the surface charge multipole moments analytically.
With the truncation of the expansion of �1 and �2 to l�1,
Eq. �40� gives

�1,00 = −
�2 − �1

�2

q1

�1
,

�1,10 =
�2 − �1

�2 + 1
2�1

	 a1
2

2R2

q2

�1
+

a1
2

2R2�2,00 −
a1

2a2

R3 �2,10
 ,

�1,1�1 = −
�2 − �1

�2 + 1
2�1

a1
2a2

2R3 �2,1�1, �47�

and a similar set of equations for �2,lm. The solution of these
two sets of linear equations becomes

�1,00 = −
�2 − �1

�2

q1

�1
,

�2,00 = −
�2 − �1

�2

q2

�1
, �48�

�1,10 =
1

2� �2 − �1

�2 + 1
2�1


 a1
2

R2

q2

�2
+

1

2� �2 − �1

�2 + 1
2�1


2a1
2a2

3

R5

q1

�2

+ O�R−8� ,

�2,10 = −
1

2� �2 − �1

�2 + 1
2�1


 a2
2

R2

q1

�2
−

1

2� �2 − �1

�2 + 1
2�1


2a2
2a1

3

R5

q2

�2

+ O�R−8� , �49�

�1,1�1 = 0,

�2,1�1 = 0. �50�

The insertion of the spherical surface charge multipole
moments given by Eq. �49� into Eq. �45� gives

Uq1q2
=

1

4��0�1

q1q2

R
,
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U�1q2
=

1

4��0
	−

�2 − �1

�1�2

q1q2

R
+

1

2� �2 − �1

�2 + 1
2�1


 a1
3

R4

q2
2

�2

+
1

2� �2 − �1

�2 + 1
2�1


2a1
3a2

3

R7

q1q2

�2
+ O�R−8�
 ,

Uq1�1
= −

1

4��0�1

�2 − �1

�2

q1
2

a1
, �51�

and with the analogous expressions for U�2q1
and U�2q2

we
have

U =
1

4��0
	−

1

2

�2 − �1

�1�2
�q1

2

a1
+

q2
2

a2

 +

1

�1

q1q2

R

−
�2 − �1

�1�2

q1q2

R
+

1

4� �2 − �1

�2 + 1
2�1


 1

�2

a2
3q1

2 + a1
3q2

2

R4

+ O�R−6�
 . �52�

The O�R−7� has been dropped since other energy terms of the
order O�R−6� are missing owing from the truncation in l.
Eventually, the interaction energy of the two subsystems be-
comes

Uint � U − U�R → 
� =
1

4��0�2
	q1q2

R

+
1

4� �2 − �1

�2 + 1
2�1


a2
3q1

2 + a1
3q2

2

R4 + O�R−6�
 , �53�

where the first term represents the electrostatic interaction of
the two charges screened by their polarization monopoles,
and the second term represents the repulsion between the
screened charge and the polarization dipole at the other sub-
system. Hence, we have provided a physical interpretation of
the leading terms of the interaction between two point
charges each located in a spherical dielectric cavity. A more
extensive model, but in the limit of no induced dipole mo-
ments and only point charges, reducing to Eq. �53� with �1

=1 has been presented,30 and the second term of Eq. �53�
originating from the presence of cavities has been included
in effective ion-ion potentials for aqueous 1–1 electrolytes
but found to be small in magnitude.31

The second case comprises the limit a2→0, i.e., when
the dielectric cavity of subsystem 2 is negligible. The inser-
tion of a2=0 in Eq. �44� gives �2,lm=0, l�1. This, together
with Eqs. �43� and �44�, results in

�1,00 = −
�2 − �1

�2

q1

�1
,

�1,lm =
l

l + 1

�2 − �1

�2 + l
l+1�1

a1
l+1

Rl+1

q2

�2
�m0, l � 1,

�2,lm = −
�2 − �1

�2

q2

�1
�l0�m0. �54�

Furthermore, the insertion of the surface charge multipole
moments into Eq. �46� gives the interaction energy

Uint =
1

4��0�2
	q1q2

R
+

1

2 �
l�1

l

l + 1

�2 − �1

�2 + l
l+1�1

a1
2l+1

R2l+2q2
2
 .

�55�

There is here a subtlety. A direct assumption a2=0 before
solving the dielectric boundary conditions leads to an incon-
sistency. The dielectric screening of the electrostatic interac-
tion between monopoles q1 and q2 becomes ill-defined, since
q1 would then reside in a medium with the relative dielectric
permittivity �1 and q2 in a medium with the relative dielec-
tric permittivity �2��1.

Finally, the total electrostatic potential at r	a1 is given
according to

��r� = �q1
�r� + �q2

�r� + ��1
�r�

=
1

4��0�2
	1

r
q1 + � 1

�r − R�

+ �
l

l

l + 1

�2 − �1

�2 + l
l+1�1

a1
2l+1

Rl+1

1

rl+1 Pl�cos ��
q2
 ,

�56�

where Eq. �11� has been used and the � denotes the angle
between r and the z axis. The reaction field at r	a1 arising
from the polarization surface charge density becomes

��1
�r� =

1

4��0
	−

�2 − �1

�2

1

r

q1

�1

+ ��
l

l

l + 1

�2 − �1

�2 + l
l+1�1

a1
2l+1

Rl+1

1

rl+1 P1�cos ��
q2

�2

 ,

�57�

an expression �in particular after the omission of the first
term that is due to charge q1� that has frequently appeared in
the literature.1,14–16

E. Two dipoles

Instead of only monopoles, we will now make the re-
striction that we have only dipoles, i.e., Q1,l1m1

�0 only for
l1=1 and Q2,l2m2

�0 only for l2=1. The relation between the
Cartesian and standard forms of the dipole moments is

Q10 = pz,

Q11 = − 1
�2

�px + ipy� ,

Q1−1 = 1
�2

�px − ipy� ,

px = − 1
�2

�Q11 − Q1−1� ,

py = i
�2

�Q11 + Q1−1� ,

pz = Q10. �58�

Again we let R be parallel to the z axis. With these
dipoles, we get from Eq. �40�,

�1,00 = 0, �59�
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�1,l1m = −
�2 − �1

�2 +
l1

l1+1�1
�Q1,l1m�l11

�1

1

a1
l1

−
l1

l1 + 1
a1

l1+1


	�− 1�l1+mf�l1,1,m,− m�
Q2,1m

�1

1

Rl1+2

+ �
l2

�− 1�l1+mf�l1,l2,m,− m�a2
l2�2,l2m

1

RL+1
� ,

l1 � 1, �60�

and from Eq. �33� we get the electrostatic energy contribu-
tions

Up1p2
=

1

4��0�1
�
m

�− 1�f�1,1,m,− m�Q1,1mQ2,1−m
1

R3 ,

U�1p2
=

1

4��0
�
l1

�
m

�− 1�l1


f�l1,1,m,− m�a1
l1�1,l1mQ2,1−m

1

Rl1+2 ,

U�1p1
=

1

4��0
�
m

1

a1
2�1,1m

* Q1,1m. �61�

Also here we will consider a truncation of the expansion of
�1 and �2 and solve the surface charge multipole moments
analytically. With the truncation of the expansion of �1 and
�2 to l�1, Eqs. �59� and �60� give

�1,00 = 0,

�1,10 = − �	 1

a1

Q1,10

�1
−

1

2

a1
2

R2�2,00 +
a1

2

R3

Q2,10

�1

+
a1

2a2

R3 �2,10
 ,

�1,1�1 = − �	 1

a1

Q1,1�1

�1
−

1

2

a1
2

R3

Q2,1�1

�1
−

1

2

a1
2a2

R3 �2,1�1
 ,

�62�

and a similar set of equations for �2,lm. The solution of these
two sets of linear equations becomes

�1,00 = 0,

�2,00 = 0, �63�

�1,10 = − �
1

a1

Q1,10

�1
− ��1 − ��

a1
2

R3

Q2,10

�1

+ �2�1 − ��
a1

2a2
3

R6

Q1,10

�1
+ O�R−9� ,

�2,10 = − �
1

a2

Q2,10

�1
− ��1 − ��

a2
2

R3

Q1,10

�1

+ �2�1 − ��
a2

2a1
3

R6

Q2,10

�1
+ O�R−9� , �64�

�1,11 = − �
1

a1

Q1,11

�1
+

1

2
��1 − ��

a1
2

R3

Q2,11

�1

+
1

4
�2�1 − ��

a1
2a2

3

R6

Q1,11

�1
+ O�R−9� ,

�2,11 = − �
1

a2

Q2,11

�1
+

1

2
��1 − ��

a2
2

R3

Q1,11

�1

+
1

4
�2�1 − ��

a2
2a1

3

R6

Q2,11

�1
+ O�R−9� . �65�

The insertion of Eqs. �63�–�65� into Eq. �61� and the analo-
gous expressions for U�2p1

and U�2p2
give eventually the

interaction energy after using Eq. �58�,

Uint � U − U�R → 
�

= −
1

4��0�2
� 3�2

2�2 + �1

23�p1 · ẑ��p2 · ẑ� − �p1 · p2�

R3

+ O�R−6� . �66�

Thus, a dipole in a spherical cavity with the relative dielec-
tric permittivity �1 �and even in the limit of a zero radius� in
a dielectric medium with the relative dielectric permittivity
�2 appears to have a dipole moment larger than the micro-
scopic one, where the limiting enhancement factor 3/2 is
achieved when �2��1. This appearance was first established
by considering the electrostatic field in the dielectric eman-
cipating from one dipole in a cavity,24,25 and later derived for
two dipoles, each in one cavity.20

VI. NUMERICAL EXAMPLES

Some selected examples illustrating the effect of the sur-
face polarization at dielectric discontinuities on the interac-
tion energy will now be provided. We will consider systems
possessing either two or three subsystems, where each sub-
system is composed of a charge or a dipole localized at the
center of a spherical region with the relative dielectric per-
mittivity �1, immersed in a medium characterized by �2. For
simplicity, we assume equal absolute charge qi= �q�, equal
magnitude of the dipole moments pi= p, and equal radius
ai=a. Each system will be examined at two different dielec-
tric conditions: spheres with �1=1 in a medium with �2

=80 �case A� and spheres with �1=80 in a medium with �2

=1 �case B�. Case A could correspond to low-dielectric par-
ticles carrying a charge or dipole moment in water, whereas
case B to charged water droplets in oil or air.

The effect of the surface polarization will be examined
by considering the reduced interaction energy Uint

red defined
according to
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Uint
red �

Uint

limai→0,∀iUint
, �67�

where the interaction energy Uint is given by Eq. �34�. In the
case of charges the denominator simplifies to

limai→0,∀iUint = �
i

�
j	i

1

4��0�2

qiqj

Rij
, �68�

and in the case of dipoles to

limai→0,∀iUint = �
i

�
j	i

�− 1�
1

4��0�2
� 3�2

2�2 + �1

2



3�pi · Rij��p j · Rij� − �pi · p j�

Rij
3 . �69�

Hence, Uint
red represents the ratio of the interaction energy

with the cavities present and the interaction energy for the
corresponding system but with zero cavity radii, i.e., the
charges or the dipoles appear in a homogeneous medium
characterized by the relative dielectric permittivity �2. Note,
in the case of dipoles the �3�2 / �2�2+�1��2 factor appears,
resulting in the limit Uint

red→1 for infinitely separated dipoles.
In the following, we will monitor Uint

red as a function of R /2a,
a single parameter used to characterize the relative positions
of the subsystems, with R / �2a�=1 being the lower limit cor-
responding to sphere contact. Details of the numerical calcu-
lations are given in the Appendix.

A. Monopoles

We will first consider systems containing subsystems
composed of a charge in the center of the spherical dielectric
cavity. Figure 4 displays the reduced interaction energy Uint

red

as a function of the separation variable R / �2a� for three such
systems. The first system is composed of two subsystems
with a charge-charge separation R �Fig. 4�a��; the second
system comprises three subsystems arranged colinearly with
equal separation R between the central and its two neighbor-
ing charges �Fig. 4�b��; and in the last system three sub-
systems are arranged in an equilateral triangle with charge-
charge separations R �Fig. 4�c��.

Figure 4�a� shows the reduced interaction energy as
function of the reduced separation between the two charges
of equal �solid curves� and opposite �dashed curves� sign. In
case A and with charges of the same sign and consequently
Uint	0, we have Uint

red	1, i.e., the repulsive interaction be-
comes more repulsive, whereas with charges of the opposite
sign and Uint�0, we have Uint

red�1, i.e., the attractive inter-
action becomes less attractive. In case B with charges of
opposite sign, the reverse holds, the repulsive interaction be-
comes less repulsive, and the attractive interaction becomes
more attractive. The changes of the interactions are between
7% and �40% at sphere contact. The qualitative influence �i�
of the sign of the charges and �ii� of the relative sizes of �1

and �2 follows the leading expression given in Eq. �53�. In
other words, in case A with �1��2 the polarization surface
charges give rise to a repulsive contribution to the interaction
energy and in case B with �1	�2 to an attractive contribu-
tion, the sign of these contributions being independent of the

sign of the charges. Buff et al.20 have investigated additional
conditions and provided further discussion of this system,
whereas the results given in Fig. 4�a�, but in a slightly dif-
ferent representation, were presented in Fig. 5 of Ref. 19 by
Allen and Hansen using a variational approach.

Figure 4�b� shows results for the three charges arranged
colinearly with charges being of the same sign �solid curves�
and for the central charge being the opposite of the two oth-
ers �dashed curves� where the interaction energy is attractive.
The qualitative dependence of Uint

red on the sign of the inter-
action energy and on the relative size of �1 and �2 are the
same as with two charges. However, the relative influence of
the polarization surface charges on Uint

red becomes smaller,
due to the many-body nature of the polarization interaction.
For example, with the three charges colinearly arranged, the
odd moments of the polarization surface charge at the central
dielectric boundary vanish due to the symmetry �the electri-
cal fields originating from the two outer charges on the cen-

FIG. 4. �Color online� Reduced interaction energy, Uint
red, as defined by Eq.

�67� as function of the reduced distance, R /2a, with a denoting the cavity
radius at �1=1 and �2=80 �labeled case A� and �1=80 and �2=1 �labeled
case B� for �a� two charges with same �solid curves� and opposite �dashed
curves� sign; �b� three colinearly positioned charges with same �solid
curves� and alternating �dashed curves� sign; and �c� three charges arranged
in an equilateral triangle with same sign �solid curves� and with two posi-
tively and one negatively charged �dashed curves�.
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tral one cancel�. The annihilation of the polarization surface
charge multipole with l=1 makes the influence of the polar-
ization surface charges more short-ranged, an effect also vis-
ible by comparing results in panels �a� and �b� of Fig. 4.

Finally, the corresponding results when the three charges
are arranged in an equilateral triangle are given in Fig. 4�c�.
Generally, Uint

red deviates more strongly from unity as com-
pared to the colinear arrangement in Fig. 4�b� as well as to

the dimer in Fig. 4�a�. On a qualitative level, the stronger
influence of the surface polarization could be understood
from the fact that the system with three charges all close to
each other is electrostatically stronger interacting. A closer
examination shows that the effect of the surface polarization
is particularly enhanced with, say, one negative and two
positive charges for both cases A and B �dashed curves�.
Here, the electrical fields from the two positive charges at the
center of the negative charge are cooperating. We notice that
attractive interaction at sphere contact is in case A with �1

��2 reduced by �30% and in case B with �1	�2 increased
by �70%.

B. Dipoles

A similar investigation of the effect of the surface polar-
ization has been made for dipoles in spherical dielectric cavi-
ties. Figure 5 displays the reduced interaction energy Uint

red for
four such systems. The first two systems comprise two di-
poles with their dipole moments parallel �Fig. 5�a�� or per-
pendicular �Fig. 5�a�� to the interdipole vector, whereas the
two last systems involve three dipoles colinearly arranged
with their dipole moments parallel �Fig. 5�c�� or perpendicu-
lar �Fig. 5�d�� to the interdipole vector. In the two former
systems both parallel and antiparallel orientations of the two
dipoles were considered, whereas in the two last systems
parallel and alternating orientations of the three dipoles are
examined. Again the two conditions, case A with �1��2 and
case B with �1	�2, have been treated.

The results given in Fig. 5 can be summarized as fol-
lows. �a� As for charges, surface polarization leads �i� in case
A to that repulsive interactions become more repulsive and
attractive interactions becomes less attractive and �ii� in case
B to that repulsive interactions become less repulsive and
attractive interactions become more attractive. �b� The rela-
tive change of Uint is larger for case B as compared to case
A. �c� The effect of the surface polarization is larger when
the dipoles are parallel to the interdipole direction as com-
pared to when they are perpendicular to that direction. This
could be understood from the twofold larger interaction en-
ergy for the parallel arrangement appearing for the same
separation R. �d� The relative change of the interaction po-
tential is much larger than that occurring for charges. For
example, in case A and with the dielectric spheres in contact,
the surface polarization increases the repulsion between two
repelling charges by �10% �Fig. 4�a�, solid curve�, whereas
the repulsion between two dipoles with the opposite direc-
tion is increased by �50% �Fig. 5�a�, solid curve�. Further-
more, the magnitude of the attractive interaction between
two opposite charges is reduced by �5% �Fig. 4�b�, dashed
curve� and that between two dipoles with the same direction
is reduced by �20% �Fig. 5�a�, dashed curve�. In contradic-
tion to the case with charges, the many-body effects as ex-
pressed by Uint

red�1 increase with three colinear spheres as
compared to 2. Here, the leading moment of the surface po-
larization charge of the central sphere is enhanced by the
electrostatic fields of the two neighboring dipoles with same
dipole directions; not annihilated as in the case with two
surrounding charges of the same sign.

FIG. 5. �Color online� Reduced interaction energy, Uint
red, as defined by Eq.

�67� as function of the reduced distance, R / �2a�, with a denoting the cavity
radius at �1=1 and �2=80 �labeled case A� and �1=80 and �2=1 �labeled
case B� for �a� two dipoles with dipole directions parallel to the interdipole
vector with opposite �solid curves� and same �dashed curves� dipole direc-
tions; �b� two dipoles with dipole directions perpendicular to the interdipole
vector with opposite �solid curves� and same �dashed curves� dipole direc-
tions; �c� three colinearly positioned dipoles with dipole directions parallel
to the interdipole vector with alternating �solid curves� and same �dashed
curves� dipole directions; and �d� three colinearly arranged dipoles with
dipole directions perpendicular to the interdipole vector with alternating
�solid curves� and same �dashed curves� dipole directions.
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VII. CONCLUSIONS

On the basis of classical equations for electrostatic fields
in homogenous media and at dielectric discontinuities, a
united description of the electrostatics of an arbitrary number
of electrostatic multipoles, each localized in a spherical di-
electric cavity, in a dielectric medium is given. Focus has
been made to provide expressions of the polarization surface
charge density, the electrostatic potential energy, and the
electrostatic interaction for the general case, as well as in
simplified cases. The correct limit of the electrostatic inter-
action for charges in a medium is obtained by placing the
charges in a spherical dielectric cavity, solving the equations
describing the electrostatics, and then taking the limit of zero
cavity radii. Interacting electrostatic multipoles in dielectric
spheres immersed in a medium with a higher �lower� relative
dielectric permittivity experience a repulsive �attractive� po-
tential term that increases in magnitude at reduced multipole
separation, originating from the polarization surface charges
appearing at the dielectric interfaces.
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APPENDIX: COMPUTATIONAL ASPECTS

In a numerical solution, the expansion of the surface
charge density, ����, in spherical harmonics, Clm, given by
Eq. �8� needs to be truncated. The l index of the highest
surface charge multipole moment �lm included is denoted by
lmax. These multipole moments were solved iteratively ac-
cording to Eq. �31� and the total electrostatic energy and the
interaction energy were evaluated using Eqs. �32�–�35� em-
ploying a FORTRAN 90 computer program.32 Faster algorithms
were implemented for systems �i� possessing axial symmetry
and/or �ii� carrying charges only, using simpler expressions.

The truncation error and the computational time will be
given for solving a system involving two subsystems, each
being composed of a unit charge at the center of a dielectric
sphere, at the separation R / �2a�=1.001 with a=1 and with
�1=1 and �2=80. Hence, the surface-to-surface separation
between the two spheres is 0.1% of the diameter of the
sphere. The convergence in lmax becomes quickly faster at
larger separation. Throughout, the iteration of the multipole
moments were terminated when the change in U between
two iterations were below 10−9.

Figure 6�a� shows the total electrostatic energy U given
by Eqs. �32� and �33� and the reduced interaction energy Uint

red

given by Eq. �67� relative to their values at lmax=100 as a
function of lmax. If we, for simplicity, regard the values at
lmax=100 as the exact ones, the ordinate provides the trunca-
tion errors for a given value of lmax. First, and as expected,
the truncation errors decrease with increasing lmax. Further-
more, the truncation error of Uint

red is �100 times larger than
that of U, the reason being that �Uint��0.01�U� due to the
canceling effect in Eq. �34� when forming the interaction

energy. In the main calculations, lmax=60 has been adopted;
thus providing five significant figures of Uint

red at the shortest
separation R / �2a�=1.001 considered. As mentioned, the
truncation error of Uint

red becomes rapidly much smaller at
increasing R.

The CPU time tCPU for these calculations is provided in
Fig. 6�b�. It is observed that a reduction from a full treatment
to algorithms taking into account axial symmetry decreases
tCPU by two to four orders of magnitude, the reduction being
dependent on lmax. The effect of having only charges instead
of general multipoles reduces tCPU by a factor of 2. The
number of operations for the iterative solution and interac-
tion calculations both scales roughly as nop�ncoeff

2 , where the
number of expansion coefficients �lm per cavity is ncoeff

= �1+ lmax��� with ��=2 with a full treatment and ��=1 with
axial symmetry. Hence, theoretically we have the estimate
nop� �1+ lmax��� lmax

� with �=4 and 2, respectively. Figure
6�b� shows that tCPU� lmax

� with ��4 with a full treatment
and ��2 with axial symmetry, consistent with this estimate.
The increased slope appearing after lmax=45 originates from
the use of an increased precision in the evaluation of the f
function given by Eq. �29� when l	45. However, at lmax

�45 the power law dependence with the original exponents
resumes.

FIG. 6. �Color online� �a� Total electrostatic energy, U, and reduced inter-
action energy, Uint

red, and �b� the CPU time, tCPU, as a function of the trunca-
tion of the spherical harmonic expansion of the polarization surface charge
density, lmax, for a system composed of two subsystems, each composed of
a unit charge localized in a spherical dielectric cavity with the relative per-
mittivity �1=1 in a medium characterized by �1=80 at a separation
R / �2a�=1.001, where a=1 is the cavity radius. In �a�, the values are given
with respect to those for lmax=100. In �b�, data are given for full treatment
�full� and axial symmetry �axial�, as well as for general multipoles �multi�
and charges �mono�. The dashed lines show the slopes 2 and 4.
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